
Random Forest Regression of Charge Balancing
Data: A State of Health Estimation Method for

Electric Vehicle Batteries
Alexander Lamprecht1, Moritz Riesterer1, Sebastian Steinhorst2

1TUMCREATE, Singapore, alexander.lamprecht@tum-create.edu.sg
2Technical University of Munich, Germany

Abstract—Recently, Electric Vehicles (EVs) are becoming more
widespread. However, their mass adoption is hindered by the
limited capacity of their Energy Storage System (ESS). Nowa-
days mainly Lithium-ion (Li-ion) technology is used for mobile
applications, however, their energy density and cost put a hard
limit on the maximum size of viable EV battery packs. Therefore,
it is crucial to use existing technologies as effective as possible. To
efficiently use a battery pack over its entire lifetime, the State of
Health (SoH) of the cells needs to be taken into account. In this
paper, we propose a novel SoH estimation method, based on the
battery pack’s behavior during Active Charge Balancing (ACB).
From this behavior we are deriving a metric and show that it
strongly correlates with the SoH. We use this metric, together
with other cell parameters, to train a Random Forest (RF)
regression estimator. To gather the training data, we implemented
a modular simulation framework, that is able to reproduce the
charging and discharging cycles, the charge balancing processes,
as well as the aging behavior of battery packs over their entire
lifetime. Besides showing a strong correlation between balancing
behavior and SoH, we are able to estimate the cells’ SoH with an
accuracy of 1.94 % for the capacity and 4.28 % for the resistance,
respectively. Our capacity SoH estimation outperforms state-of-
the-art machine learning approaches, while we are among very
few to even provide an estimate for the resistance with a high
accuracy.

I. INTRODUCTION AND RELATED WORK

In an era of climate change and a global shift to electrifi-
cation in most aspects of society, sustainable Energy Storage
System (ESS) play an increasingly important role. In most
situations where ESS are used, it is of crucial importance to
reliably estimate the remaining available energy.

Typical use cases are range estimation in Electric Vehicles
(EVs) or PMDs as well as optimizing utilization in stationary
storage systems. Most modern mobile ESS use Lithium-ion
(Li-ion) battery technology, because of the high energy and
power density. In Li-ion battery cells the remaining available
energy level is indicated by the State of Charge (SoC).
However, precise SoC estimation is challenging, as it is highly
nonlinear and dependent on multiple variables, such as voltage,
discharge rate, temperature and aging status. Particularly the
last parameter has a significant influence on a given cell’s
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Fig. 1: Schematic representation of the process sequence of
the simulation and analysis framework for a battery pack with
y cells. Various parameters of the Active Charge Balancing
(ACB) processes, such as the initial voltage at which a
balancing process started V0, the voltage difference caused
by the balancing process ∆V , the discrepancy between the
number of steps as charge sender and as receiver ∆N , the
temperature T are recorded, collated and processed. This data
is used to train a random forest estimator and allows accurate
computation of the cell level State of Health (SoH) of the
entire battery pack.

performance in terms of power and capacity. It, therefore,
is of central importance to estimate the aging status, which
is typically represented by the SoH. To be able to reliably
estimate a cell’s SoC over its lifetime it is, therefore, necessary
to also know about the cell’s SoH. Accurate SoH estimation,
however, proves difficult. Many different methods have been
discussed in literature, such as extended Kalman Filter, en-
hanced Coulomb Counting, Electro Impedance Spectroscopy
or even complex impedance analysis via Grey-Markov Chain



[1]–[3]. All these methods, however, require highly precise
measurement of cell parameters, additional hardware or high
computing power. Therefore, there has recently been a trend
towards estimating the highly non-linear aging process with
the help of Machine Learning (ML) such as Artificial Neural
Networks (ANNs) [4]–[8].

In this paper we introduce a novel approach to estimate the
SoH of Li-ion cells in large battery packs. For the first time
the battery pack’s behavior during ACB is utilized to conclude
the SoH of each individual cell as shown in Fig. 1. We created
a modular simulation framework (Fig. 4 on page 4), which is
capable of replicating the aging and ACB behavior of battery
packs over their entire lifetime and estimating the SoH via
Random Forest (RF) regression.

Sections II&III give an overview of battery aging and ACB.
The simulation framework is detailed in Section IV and the
RF estimation method is explicated in Section V. Lastly, our
results are presented and evaluated in Section VI, followed by
a brief conclusion in Section VII.

Our specific contributions in this paper are:
• We implemented a comprehensive battery aging simu-

lation framework, by extending the open source Cyber-
Physical Co-Simulation Framework (CPCSF) from [9]
with an empirical battery aging model based on [10] and
a vehicle, drive cycle and climate model to apply different
usage scenarios.

• We enhanced the CPCSF to clearly separate between
physical battery model and a Battery Management Sys-
tem (BMS) model which allows the separation between
the physical aging processes and calculations based on
measurable data.

• We utilize a random forest regressor, trained by sim-
ulation results, to perform online SoH estimation on
verification data.

• We are able to show that the SoH of the Li-ion cells can
be deduced solely based on information drawn from the
ACB (Section VI on page 4).

• The overall estimation accuracy of our method is 1.94 %
for the capacity and 4.28 % for the internal resistance.

II. AGING OF LI-ION BATTERY CELLS

While Li-ion technology currently is the industry standard
for all sorts of non-stationary ESS applications, due to its
superior power and energy density, it requires particular pre-
cautions during operation. If not used within distinct operation
parameter limits, Li-ion technology can pose a significant
safety risk. To ensure safe and reliable operation, every ESS
based on Li-ion technology needs to be equipped with a BMS.
Furthermore, Li-ion cells suffer from material degradation,
conventionally referred to as aging.

Battery aging has two main causes. One is material degra-
dation that happens based on time, commonly referred to as
calendric aging. The second cause is cyclic aging, degradation
resulting from usage of the cell [11].

The consequences of this material degradation are twofold.
Firstly, a reduced energy storage capability due to a loss in
usable capacity, and, secondly, a reduced power output due to
increasing internal resistance.
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Fig. 2: Decline of SoHC and SoHR of several battery packs
over their life time for various usage patterns and climate
scenarios.

To quantify these aging effects, the SoH is introduced. It
is important to note that there is no standardized definition
of the SoH and, therefore, different definitions can be found
in literature [12]. In this paper we define the SoH as a
weighted combination of two values, one for the loss in
capacity (SoHC) and one for the increase in internal resistance
(SoHR) with SoH, SoHC, SoHR ∈ [0, 1]. A SoH = 1
represents nominal capacity or nominal internal resistance.
For obvious practical reasons, End-of-life (EOL) criterions are
chosen for the remaining capacity and the internal resistance,
upon which the respective SoHs are defined to be 0. The
criterion EoLC is fulfilled if the remaining capacity Cm falls
below 75 % of the nominal capacity Cn. The criterion EoLR is
fulfilled if the internal resistance Ri,m has doubled compared
to the nominal internal resistance Ri,n. SoHC and SoHR are
therefore defined according to Equations 1 & 2.

SoHC =

(
Cm

Cn
− EoLC

)
· 1

1− EoLC
(1)

SoHR =

(
EoLR −

Ri,m

Ri,n

)
· 1

EoLR − 1
(2)

The overall SoH of the battery pack is a combination of
SoHC and SoHR.

The values for Cm and Ri,m are subject to aging, according
to the empirical aging model in [10], and are updated every
time the battery gets charged or discharged. Fig. 2 shows
the decline in SoHC and SoHR over time for four battery
packs with different usage scenarios until the EOL criterion
is reached. The scenarios vary in usage pattern, charging
frequency, Depth of Discharge (DoD) and ambient climate
conditions. The aging calculation follows equations 3 and 4
and considers cyclic (β) as well as calendric (α) aging. These
equations are taking the cell voltage V, the cell temperature
T, the average voltage over one cycle V and the DoD DOD
over one cycle into account, with α = f(V, T) and β =
f(V

,
DOD). The resulting aging factors δC and δR represent

the remaining capacity and internal resistance, respectively.

δC = 1− αC · t0.75 − βC ·
√
Q (3)
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Fig. 3: The inductor based non-neighbor ACB architecture
from [13] facilitates the charge transfers between cells.

δR = 1 + αR · t0.75 + βR ·Q (4)

However, the factors α and β are characteristic to each
individual cell and, therefore, replicate the heterogenous SoHs
of physical cells. These SoHs variations, in turn, result in
disparate SoCs. Not addressing these disparities leads to ever
increasing charge imbalances between the cells, which dimin-
ish the overall usable pack capacity. It is therefore essential
to periodically remove these imbalances via a process called
charge balancing.

III. CHARGE BALANCING IN LARGE BATTERY PACKS

Charge balancing is the process of altering remaining charge
of a cell in a battery pack in order to equalize the SoC. While
the current state-of-the-art solution of passive charge balancing
equalizes the cells’ SoC by dissipating excess energy over
a resistor, ACB increases efficiency by transferring charge
between cells [14]. Many different ACB architectures have
been proposed in literature. All of which have in common
that they are built around a temporary energy storage ele-
ment. Typically this energy storage is either a capacitor, an
inductor or a transformer. It has been shown that inductor
based architectures offer the best trade-off between hardware
complexity and efficiency gains [13]. In this paper therefore
the architecture shown in Fig. 3 is utilized as the basis for
the ACB. A single charge transfer, transferring a set amount
of charge from one cell to another, is called a balancing step.
One complete ACB process therefore consists of a sequence
of balancing steps. It is controlled by the BMS via consensus
algorithms that form a set of rules which are called strategies.
These strategies decide during runtime which balancing step
is to be executed next. They have a significant impact on the
efficiency of the balancing process and have been discussed
extensively in literature [9], [15]. In this paper only the
proposed strategy from [15] will be applied, as it has proven
to be highly efficient.

As the necessity for ACB is a consequence of aging, they
are directly related. However, this relation has not yet been
sufficiently examined in literature. The central idea behind this
paper is, therefore, that the details of the balancing process
directly correlate to aging.

IV. SIMULATION FRAMEWORK

To investigate the correlation between the SoH and the
ACB process, a simulation framework was developed. The
framework is able to model a given battery pack over its entire
lifetime and has three main functions.

Firstly it provides functionality for charging and discharg-
ing. Various charging regimes can be applied (Fast Charging/
Trickle Charging). As this paper focusses on automotive appli-
cations, a typical Constant Current, Constant Voltage (CCCV)
charging method for Li-ion cells with 0.5 C was chosen. The
discharging current is derived from the power demand of a
vehicle model based on a Tesla Model S with a 85 kWh battery
pack following the WLTP3 driving cycle, which is fed to the
model in one second intervals. The vehicle model uses open
source measurements for the ABC coefficients done by the
EPA [16].

The second important component of the framework is an
accurate aging model. To replicate the aging behavior of each
individual cell, the empirical aging model from Section II is
employed.

The third crucial component of the framework is the ACB
functionality. This work is building on top of the CPCSF,
presented in [9], as it provides many capabilities required
for the desired simulation. Its realistic reproduction of the
balancing process makes it perfectly suitable to verify our
SoH estimation concept. Fig. 4 illustrates the structure of the
simulation framework. It is implemented in Python, on top of
the process-based discrete-event simulation tool SimPy.

The battery pack is modeled after a Tesla Model S battery
pack with 18650 cells in 96S74P configuration and 85 kWh
capacity [17]. To assess the accuracy of the SoH estimation
method, every cell is split in two distinct models. One part to
reproduce the physical cell behavior and aging effects, which
we call the physical model, and a second part which contains
the image of the given physical cell in the BMS, which we
call the Cell Management Unit (CMU) model.

The physical model encompasses the battery cell itself
characterized by its remaining maximum capacity Cm, charge
level Qr, internal resistance Ri, as well as temperature T and
momentary current I. It furthermore contains the computed
values for its SoC = Qr

Cm
and its terminal voltage V. The

value for Ri is dependent on the SoC and the temperature. The
values for Cm and Ri are subject to aging according to the
empirical aging model detailed in Section II and are updated
after every discharge or charge cycle. Since this aging model
is based on real physical measurements, it is reasonable to
assume that the simulated cells behave realistically.

The CMU model contains the BMS, logic and communi-
cation components as well as a set of variables, imaging the
current status of the physical cell model. The CMU model
can interact with the physical model only by requesting the
current voltage, current and temperature, which correlate to
actual measurements of cell parameters.

Besides the sensing and measuring functionality and sec-
ondary data calculation, the CMU model also performs safety
critical BMS functions like overvoltage and overcurrent pro-
tection and state monitoring.
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Fig. 4: Structure of the simulation framework. Scenarios are
composed of driving and charging profiles, daily usage pattern,
and temperature conditions and applied to the battery pack
model.

The other central functionality of the model is the control
of the ACB procedure. As described in Section III on the
previous page, the ACB procedure is a sequence of individual
balancing steps, each of which transfers a certain amount
of charge between two cells. The sequence is controlled by
strategies with the goal to converge all cells’ SoCs to an equal
value. Previously, while the overall efficiency in terms of time
and losses of these strategies was paramount, the details of
the individual balancing steps were neglected. The method
proposed in this paper is based on exactly these balancing
steps. Each step has a sender, a receiver and a frequency of
occurrence. To record the individual balancing steps, the model
includes a data logging module. Besides information about the
balancing procedure from the CMU model, the logger also
records aging data from the physical model.

V. SOH ESTIMATION METHOD

To facilitate the SoH estimation, the previously recorded
data from the simulation framework is used to train the
estimator. The particular data values for a given cell with index
i and a balancing process with index p are the initial voltage
at which a balancing process started V0,i,p, the voltage differ-
ence caused by the balancing process ∆V i,p, the discrepancy
between the number of steps as sender and as receiver ∆N i,p

and the temperature Ti,p. We define γi,p as the quotient of
the receiver/sender step discrepancy ∆N i,p and the voltage
differential ∆V i,p.

γi,p =
Ns,i,p −Nr,i,p

∆V i,p
=

∆N i,p

∆V i,p
(5)

Fig. 5 visualizes the correlation between γi,p and the SoHC,
exemplarily for one cell. Every entry of the scatterplot corre-
sponds to data of one balancing process (Fig. 1). Even though
the plot reveals a linear correlation between γi,p and SoHC,
it also shows the formation of two distinct bands, resulting in
ambiguous SoHC estimation values for a given γi,p. Further
analysis of γi,p established a strong impact of SoC∗

0 on a shift
in SoH . This shift was particularly well-defined for SoC∗

0

values below 60 % and above 75 %. We figured, that it can
be compensated by grouping several consecutive balancing
processes together to one balancing cycle and weighted av-
eraging their γi,p according to Equation 6, resulting in Γi,p. A
balancing cycle is set to includes all balancing processes that
happen between two charging process. Figuratively speaking,

this operation bridges the gap between the bands in Fig 5 and,
consequently improves estimation accuracy.

Γi,p =

γi,p
∣∣∣∣∣∣∣∣∣
j ≤ p ≤ l with j, p, l ∈ N
SoCi,j−1 < 0.6 ∧ SoCi,j > 0.75

SoCi,l < 0.6 ∧ SoCi,l+1 > 0.75

min(p− j) ∧min(l − p)


γi,p ∈ Γi ∧ Γi,p ⊆ Γi

Γi,p =
∑

βi,pγi,p ∀ γi,p ∈ Γi,p

with βi,p = f(SoCi,p)

(6)

This resulting value Γi,p is a remarkably accurate indicator
for the SoHC of a cell, as is shown in Section VI.

As illustrated in Fig. 1, Γi,p, together with the previously
mentioned values, is used to train a Random Forest estimator.
The RF estimator was chosen as it is a lightweight ensemble
learning method that exhibits an acceptable trade off between
regression analysis accuracy and computational complexity
[18]. In future research more sophisticated methods, such as
the Gradient Boosting Machine, could be applied, as they
promise improved accuracy and performance [19]. The RF
regression uses the open-source machine learning Python
library Scikit-learn.

Training of the RF estimator was done with data from an
array of scenarios, with variations in usage pattern, climate
conditions and SoC limit below which charging is triggered.
The usage pattern defines the the time a car is driven per
day. It is varied in 1 h steps from 1 h to 4 h, during which
the standardized WLTP3 driving cycle is repeated until the
time is up or the battery pack is empty. After each day the
battery pack is charged if the SoC falls below a threshold.
This threshold is varied between 20 % and 40 % SoC. Lastly
the climate conditions are varied to either apply a constant
temperature (tropical climate) or a seasonally changing tem-
perature (temperate climate).

For each scenario the entire lifetime of four battery packs
with individual initial cell SoH distributions and aging factors
are simulated. A random subset of data from each scenario
and battery pack was picked for training (3 out of the 4
battery packs for 12 out of 16 scenarios; 56.25 %) and the
remaining data was used for validation (1 out of the 4 battery
packs for 12 out of 16 scenarios; 18.75 %) and testing (4
out of the 4 battery packs for 4 out of 16 scenarios; 25 %).
For hyperparameter tuning of bootstrap, the number of trees
and features for decision are validated using a 5-fold cross-
validation on the training data. In an additional evaluation step
using the validation data set we have found, that a tree depth of
17 provides the best performance level while the error remains
unchanged. Increasing the tree depth results in ever increasing
demand for memory and storage space.

VI. RESULTS

In this section the results we obtained from our simulation
are discussed. The simulation was conducted for battery packs
with 96S74P configuration with 85 kWh as it is used in a
Tesla’s Model S. The aging behavior of four battery packs
for each of 16 different scenarios were simulated until they
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reached their EOL. Typical simulation runtime, for one battery
pack, ranges from 50 h to 70 h depending on the aging rate.
The resulting simulation data was used to train a RF regression
estimator. Therefore, data from 12 of the 16 scenarios were
used for the training process. Data from the remaining 4
scenarios, which has not been used to train the estimator, was
used for testing. Fig. 6 visualizes the estimation results. On
the left side the results for the SoHC are displayed, and on
the right side, the results for the SoHR respectively. Fig. 6a
showcases the SoH∗ estimation results after each balancing
process (scatter plot), overlaid with the actual SoH values
(solid line) over the entire lifetime of two different battery
packs. For each battery pack only the cells with the lowest
(darker), respectively highest (lighter), SoH are displayed.
These two battery packs exhibit different aging behavior and,
therefore, life span, due to their usage scenarios. Pack1 (blue)
was cycled in a moderate climate with only 1 h of usage a
day, resulting in >4000 days before reaching its EOL. Pack2

(orange) on the other hand, was cycled in a tropical climate
with higher average temperatures with intense usage and was
regularly discharged to low SoC values, which reduces its life
time to <2000 days. Both plots in Fig. 6a show the estimation
accuracy of the RF estimator over the entire lifetime of the
pack. The estimation accuracy for the SoHR slightly worsens
over time, resulting in a wider spread in the estimation values,
while it stays almost constant for the SoHC. It is important
to note, that even though the battery cells showed vastly
different aging behavior, depending on their usage scenario,
the estimation algorithm performed well indiscriminately.

Fig. 6b displays the relative frequency histograms of the
estimation errors AEC and AER for all 4 testing scenarios
with 4 battery packs each; over 2.5 · 106 data points in
total. It, therefore, quantifies the estimation accuracy for all
simulations, with a resulting Root Mean Square Error (RMSE)
values for the capacity estimation of RMSEC = 1.94 % and
for the resistance estimation of RMSER = 4.3 %. These
results come from data sets that have previously not been
used for training and are therefore unknown to the algorithm.
Furthermore, these results have been achieved based on data
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Fig. 6: Results of the SoH estimation.
(a) Plot of the measured (scatter plot) and estimated (solid
line) SoHC and SoHR of two battery packs over their entire
life time. The darker color plots represent the lowest SoH cell
(min) and the lighter color plots represent the highest SoH cell
(max) of each pack.
(b) Relative frequency histogram of the estimation error AEC

and AER for all balancing processes from 16 scenarios, each
with four individual battery packs with 96S74P configuration.
2.5 million data points in total.

from scenarios different to those of the training data set,
furthering their generality. We therefore expect, that similar
results can be achieved with a different data set.

Table I compares our estimation accuracy with other ML
based SoH estimation approaches found in literature. Where
most other approaches are solely focusing on the SoHC and
neglect the SoHR, our method gives a consistently accurate
estimation for both values. Our approach clearly outperforms
state-of-the-art machine learning approaches for the SoHC,



TABLE I: Comparison of SoH estimation performances be-
tween this paper’s method and other ML approaches found in
literature.

source ML type RMSEC RMSER notes

[4] ANN 4.24 %∗ N/A -
[5] RNN 8.28 %∗ 1.32 % values converted from

their Mean Squared
Error definition

[6] DNN 13.72 %∗ N/A no temperature varia-
tions considered

[7] RF 2.52 %∗ N/A no temperature varia-
tions considered

[8] RF 5.20 %∗ N/A -

this paper RF 1.94 % 4.28 % ref. Section V

* values are normalized to match this paper’s SoH definition, incorporating
the EOL criteria (Section II), to ensure comparability.

while we are among very few to even provide an estimate for
the SoHR with a high accuracy. Naturally for ML algorithms,

SoHC SoHR

Γi,p 0.9376 0.8425
V0,i,p 0.0171 0.0403
∆V i,p 0.0198 0.0267
∆N i,p 0.0230 0.0184
Ti,p 0.0025 0.0721

TABLE II: Feature importance for the random forest estimator.

the different features of the input vector have varying degrees
of impact on the outcome. Table II lists the feature importance
of the input variables for the estimated SoHC and SoHR. The
significance of Γi,p, particularly for the SoHC estimation, with
93.8 % importance, becomes apparent.

VII. CONCLUSION

In this paper we propose a novel approach to estimating
the SoH of cells in large battery packs with ACB by Random
Forest regression of data from the charge balancing processes.
Therefore, we implemented a modular simulation framework,
that is able to reproduce the charging and discharging cycles,
the charge balancing processes, as well as the aging behavior
of battery packs over their entire lifetime. With simulation
results from an array of scenarios, consisting of different drive
cycles, usage patterns, and seasonal temperature profiles, we
are able to train a RF regression model to do online SoH
estimation. Not only did we show a strong correlation between
balancing behavior and SoH, but we were also able to quantify
this this correlation with an accuracy of 1.94 % for the capacity
and 4.28 % for the resistance respectively. As typical BMSs
in EV do not possess the necessary memory or computing
capacity to execute the estimation, these calculations could
either be performed remotely via a cloud service or via
peripheral hardware. Since modern vehicles are equipped with
sophisticated computing hardware to facilitate driver assisting
tasks, such as NVIDIA DRIVE AGX, the estimation could
be outsourced to these components when they are not in
use. Future research could refine the estimation method by
investigating the performance of other ML techniques, such
as Boosted Regression Trees, as they promise improvements.
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